Page 6-1

6. Alimentations à découpage à transformateur

6.1 CONVERTISSEUR À STOCKAGE INDUCTIF AVEC ISOLATION GALVANIQUE

6.1.1 Montage FLYBACK

6.1.1.1 Généralités

Le montage Flyback est basé sur celui du hacheur à stockage inductif (Buck-Boost converter ou stepdown/up converter), comme l'illustre la Figure 6.1

Figure 6.1 : Dérivation du hacheur Flyback

La fonction de base de l'inductance est inchangée et la mise en parallèle des bobinages (Figure 6.1 (b)) est équivalente à un bobinage unique. A la Figure 6.1 (c), la connexion entre les deux bobinages est rompue. Un des bobinages est utilisé lorsque le transistor Q conduit tandis que le second est actif lorsque la diode D est conductrice. Le courant totalisé est inchangé entre les Figure 6.1 (b) et (c), cependant le courant est distribué de manière différente. Le courant magnétisant dans le matériau magnétique est en tout point identique dans les deux cas. La Figure 6.1 (d) est fonctionnellement identique à la Figure 6.1 (c). Pour des raisons de simplification pratique, le transistor Q est placé de manière à pouvoir utiliser le retour de l'alimentation comme référence. De plus, pour facilité la compréhension, le bobinage secondaire est retourné ainsi que la polarité de la diode. Pour l'analyse de ce montage, on utilisera le modèle défini dans à la section précédente, illustré à la Figure 6.2.

Figure 6.2 : Montage Flyback avec modèle du transformateur réel

Lorsque le transistor Q_1 conduit, l'énergie délivrée par la source est stockée dans l'inductance magnétisante L_h. Lorsque la diode conduit, l'énergie stockée est transférée à la charge avec une tension et un courant dont le niveau est défini par le rapport de transformation n_1/n_2 .

6.1.2 Conduction continue

6.1.2.1 Relations générales en conduction continue

SYSTÈMES ÉLECTRONIQUES I, 1^{ÈRE} PARTIE

Courant moyen dans le condensateur		
$I_C^{[t_e]} = -I_R^{[t_e]} = -I_R$	$I_{C}^{[t_{d}]} = \frac{n_{1}}{n_{2}} I_{h} - I_{R}^{[t_{d}]}$	
Courant moyen fournit par l'alimentation (courant moyen dans le transistor Q)		
$I = I_h$	I = 0	
Courant moyen dans la diode		
$I_D^{[t_e]} = 0$	$I_D^{[t_d]} = \frac{n_1}{n_2} I_h$	
Valeurs moyennes pondérées		
	1-D	
$D \cdot U_{Lh}^{[t_e]} + (1-D) \cdot U_{Lh}^{[t_d]} = D \cdot (U) + (1-D) \cdot (-\frac{n_1}{n_2} U_C) = 0 \qquad \Rightarrow$	$U_C = \frac{n_2}{n_1} \frac{D}{1 - D} \cdot U$	
$D \cdot I_{C}^{[t_{e}]} + (1-D) \cdot I_{C}^{[t_{d}]} = D \cdot (-I_{R}) + (1-D) \cdot (-I_{R} + \frac{n_{1}}{n_{2}}I_{h}) = 0 \qquad \Rightarrow$	$I_R = \frac{n_1}{n_2} (1 - D) \cdot I_h$	
$I = D \cdot I^{[t_e]} + (1 - D) \cdot I^{[t_d]} = D \cdot I_h \qquad \Longrightarrow$	$I = D \cdot I_h$	
$I_D = D \cdot I_D^{[t_e]} + (1 - D) \cdot I_D^{[t_d]} = (1 - D) \cdot I_L \implies$	$I_D = \frac{n_1}{n_2} (1 - D) \cdot I_h$	

6.1.2.2 Ondulation de courant dans le domaine de la conduction continue

La Figure 6.3 montre les divers courants et tensions apparaissant dans le montage Flyback en conduction continue.

Pour des raisons de choix de transistor, il est également important de connaître la tension maximum aux bornes de ce dernier. On peut dire que durant l'intervalle $t_e \leq t < T_p$

$$u_Q = U + \frac{n_1}{n_2} U_C = \frac{U}{1 - D}$$
 6.1

6.1.3 Limite de la conduction continue

Les résultats peuvent être obtenus par similitude avec le cas du hacheur à stockage inductif. Notons qu'il existe un fonctionnement en régime d'auto-oscillation. Dans ce mode, le transistor est ouvert lorsque le courant magnétisant du transformateur atteint une valeur déterminée. La prochaine fermeture du transistor aura lieu lorsque le courant dans la diode sera nul.

Ce mode présente deux avantages et deux inconvénients.

- La mise en conduction du transistor et le blocage de la diode se font à courant nul. Cela réduit les pertes de commutation du transistor et les perturbations induites par la charge de recouvrement de la diode.
- Les valeurs du flux et, par-là, du courant magnétisant sont réduites. L'énergie stockée dans l'inductance de magnétisation est moins importante, ce qui permet la réduction de la taille du transformateur.
- L'ondulation du courant magnétisant est plus forte, ce qui augmente le facteur de dimensionnement du transformateur
- Le fonctionnement à fréquence variable rend plus difficile le filtrage

6.1.4 Fonctionnement en conduction intermittente

Dans ce cas également, il existe une similitude avec le hacheur à stockage inductif

6.1.5 Considération sur le transfert d'énergie

Le montage Flyback travaille selon deux phases distinctes. La première correspond à un stockage d'énergie sous forme de champs magnétique dans le transformateur, le secondaire de ce dernier étant ouvert. La seconde correspond à une restitution de cette énergie au secondaire du transformateur.

Deux modes opératoires sont clairement identifiables.

- Transfert complet d'énergie (mode de conduction intermittent), mode dans lequel l'énergie stockée lors de la fermeture du transistor est complètement restituée (aux pertes près) au secondaire lors de la phase d'ouverture du transistor.
- Transfert partiel d'énergie (mode de conduction continue), mode dans lequel seule une partie de l'énergie stockée dans le transformateur est restituée au secondaire

6.1.5.1 Phase de stockage de l'énergie

Lorsque le transistor Q est fermé, le primaire du transformateur est alimenté par la source de tension U. La diode D placée à la sortie du secondaire est en polarisation inverse et par conséquent aucun courant ne circule dans le bobinage secondaire. Durant cette phase de stockage, seul le bobinage primaire est actif et le transformateur peut être traité comme une simple inductance. Le temps d'enclenchement du transistor étant beaucoup plus petit que la constante de temps électrique du bobinage primaire, on peut admettre une croissance linéaire duc courant dans ce dernier. Le champ d'induction magnétique B va donc croître de B_r (Induction rémanente) à B_{max} (correspondant au courant maximum dans le bobinage primaire). La Figure 6.5 illustre cette phase

Figure 6.5 : Phase de stockage d'énergie

6.1.5.2 Phase de transfert de l'énergie

Lorsque le transistor est ouvert, le courant dans le bobinage primaire du transformateur est nul. Le courant magnétisant circule maintenant dans secondaire du transformateur, la diode placée sur la sortie étant conductrice. Le niveau de ce courant dépend du rapport de transformation alors que son sens est celui défini par la loi de Lenz. Durant la phase « Flyback », le courant magnétisant va

décroître jusqu'à la qu'il atteigne zéro dans le cas du transfert complet d'énergie ou jusqu'au moment de la fermeture du transistor dans le cas d'un transfert d'énergie partielle. La Figure 6.6 illustre cette phase

Figure 6.6 : Phase de transfert d'énergie

6.1.5.3 Transfert complet d'énergie

Pour un mode de transfert complet d'énergie, le courant magnétisant s'annule, lors de la phase de transfert, avant la fermeture du transistor (origine de la période de commutation suivante). Le champ d'induction magnétique B passe de sa valeur maximum B_{max} à sa valeur rémanente B_r (valeur correspondant à un courant magnétisant nul).

6.1.5.4 Transfert partiel d'énergie

En régime permanent (U = cte et U_C = cte), la croissance et la décroissance du courant magnétisant ne peuvent pas varier. Par contre, lors d'une phase transitoire correspondant par exemple à un accroissement du courant de charge, le temps d'enclenchement du transistor Q_1 augmente et par voie de conséquence, le temps de transfert d'énergie diminue. Le courant magnétisant ne s'annule plus à la fin d'une période de pulsation. Le mode de conduction est continu et lors du retour en régime permanent, l'énergie transférée de l'entrée vers la sortie est augmentée.

Il est important de ne pas faire une confusion sur le terme de transfert partiel d'énergie. En mode de conduction continue, l'énergie fournie par la source est transférée aux pertes près à la sortie. Par contre, le courant magnétisant n'étant jamais nul on peut dire qu'une énergie magnétique subsiste dans le transformateur. La valeur de cette énergie résiduelle est identique à chaque fin de période de pulsation. Elle sera restituée lors du passage du mode de conduction continue au mode de conduction intermittent, par exemple lors d'une diminution du courant de charge.

6.1.5.5 Capacité de transmission d'énergie d'un transformateur

Le courant magnétisant d'un montage Flyback est unipolaire. Le transformateur travaille donc dans le quadrant I uniquement. On peut montrer que pour un même transformateur, il est possible d'augmenter le transfert d'énergie. La Figure 6.7 montre qu'en ajoutant un entrefer, il est possible pour un transformateur de transmettre plus de puissance en conduction continue (transfert partiel d'énergie) que ce même transformateur sans entrefer le ferait en conduction discontinue (transfert complet d'énergie).

Figure 6.7 : Influence d'un entrefer sur le transfert d'énergie

6.1.6 Dimensionnement du transformateur d'un montage Flyback

Dans ce paragraphe, nous allons utiliser une approche itérative pratique pour le dimensionnement du transformateur utilisé dans un montage Flyback. Les points principaux sont la sélection du noyau magnétique (taille et matériau), dimensionnement de l'inductance de champ principal, de l'entrefer, le nombre de spires au primaire.

6.1.6.1 Paramètre du noyau et effet de l'entrefer

La Figure 6.8 montre l'allure typique du cycle d'hystérèse B/H pour un noyau en ferrite, sans et avec entrefer. Il faut noter que la perméabilité (pente) du cycle d'hystérèse varie avec la longueur de l'entrefer. Par contre le niveau de saturation du champ d'induction magnétique B_{sat} reste le même. Le niveau du champ magnétique H est beaucoup plus élevé et le champ d'induction magnétique rémanent est beaucoup plus petit dans le cas d'un entrefer non nul. L'adjonction d'un entrefer est donc largement profitable dans le cas d'un transformateur pour montage Flyback, lequel travaille uniquement dans le premier quadrant de la caractéristique B/H.

Figure 6.8 : Caractéristiques magnétiques typiques d'un transformateur utilisé dans un montage Flyback

6.1.6.2 Effet d'un entrefer sur les conditions AC

La Figure 6.9 montre clairement que l'augmentation de l'entrefer entraîne une diminution de la pente de la caractéristique B/H mais ne change pas la valeur crête-crête du champ d'induction magnétique ΔB_{AC} . En effet ΔB_{AC} est proportionnel au produit de la tension appliquée au primaire par le temps d'enclenchement du transistor, et par conséquent ΔB_{AC} est défini par les conditions AC extérieures, et non pas par la taille de l'entrefer.

Par contre cette augmentation de l'entrefer provoque une augmentation de la valeur crête-crête du champ magnétique ΔH_{AC} . Ceci correspond à une diminution effective de la perméabilité du circuit magnétique et par conséquent une diminution de l'inductance de champ principal..

On peut donc dire que les conditions AC appliquées agissent sur l'axe vertical des caractéristiques B/H, provoquant une modification du champ magnétique ΔH_{AC} . Dans ce cas H doit être considéré comme une variable dépendante.

Une erreur classique est de croire qu'un circuit magnétique saturé, suite à un nombre de spires primaire insuffisant ou un produit U·t_e excessif, peut être corrigé par l'adjonction d'un entrefer. Ceci est faux car l'entrefer ne modifie pas le niveau du champ d'induction magnétique de saturation B_{sat}. Par contre l'introduction d'un entrefer réduit la valeur du champ d'induction magnétique rémanent B_r et par conséquent permet d'augmenter la plage de travail de ΔB_{AC} , ce qui peut être intéressant dans le cas de la conduction intermittente.

6.1.6.3 Effet d'un entrefer sur les conditions DC

SYSTÈMES ÉLECTRONIQUES I, 1^{ÈRE} PARTIE

Un courant continu dans le bobinage (conduction continue) produit un champ magnétique H_{DC} proportionnel. Pour un courant de charge donné, H_{DC} est parfaitement défini. On voit donc que pour les conditions DC, B_{DC} doit être considérée comme une variable dépendante.

La Figure 6.8 montre que l'adjonction d'un entrefer permet au circuit magnétique de supporter un champ magnétique H_{DC} beaucoup plus important sans apparition de saturation. Par conséquent, un entrefer est très efficace pour prévenir la saturation du circuit magnétique lorsque qu'il y a une composante de courant DC (amélioration de la plage de conduction continue).

6.1.6.4 Conclusions

Le produit de la tension appliquée au primaire par le temps d'enclenchement du transistor Q₁ et la section du circuit magnétique A_e définissent la valeur AC crête-crête du champ d'induction magnétique ΔB_{AC} . Le courant continu (charge), le nombre de spires et la longueur équivalente du circuit magnétique définissent la valeur du champ magnétique H_{DC}. Ou en d'autres mots, un nombre de spires et une section du circuit magnétique suffisante doivent être assurés pour supporter les conditions AC alors qu'un entrefer suffisant permet d'éviter la saturation du circuit magnétique en accord avec les conditions DC.

6.2 CONVERTISSEUR DE TYPE SÉRIE AVEC ISOLATION GALVANIQUE

6.2.1 Montage FORWARD

Le montage Forward est dérivé du montage Buck. La continuité du courant de sortie, comme pour tous les montages dérivés du montage Buck, fait que le convertisseur Forward est très bien adapté aux applications demandant de fort courant de sortie.

Figure 6.9 : Montage Forward

6.2.2 Etude du fonctionnement

La Figure 6.10 illustre le montage Forward avec le modèle équivalent du transformateur

Figure 6.10 : Montage Forward avec modèle du transformateur réel

6.2.2.1 Intervalle de conduction du transistor

Durant le premier intervalle de la période de pulsation T_p , le transistor Q_1 est conducteur. La diode D_2 est polarisée dans le sens passant alors que les diodes D_1 et D_3 sont bloquées. La tension U de la source est appliquée aux bornes du bobinage primaire du transformateur et le courant magnétisant i_n croît linéairement pour atteindre un maximum à la fin du temps d'enclenchement

$$i_{hMAX} = i_h(t_e) = \frac{U}{L_h} \cdot t_e = \frac{U \cdot T_p}{L_h} \cdot D$$
6.2

la tension aux bornes de D₃ vaut

$$u_{D3} = \frac{n_3}{n_1} U \tag{6.3}$$

Figure 6.11 : Montage Forward avec Q₁ et D₂ conducteurs

6.2.2.2 Extinction du courant magnétisant

Le second intervalle commence lorsque le transistor Q_1 est déclenché. La Figure 6.12 illustre les parties actives dans cet intervalle. Le courant magnétisant $i_h(t)$ est positif et doit continuer de circuler. Puisque le transistor Q_1 est ouvert, le circuit équivalent montre que le courant magnétisant i_h en conjonction avec le sens des bobinages primaire et auxiliaire entraîne la polarisation de la diode D_1 dans le sens direct et par conséquent la circulation d'un courant dans le bobinage auxiliaire. Le courant dans le bobinage auxiliaire vaut

$$\dot{i}_2(t) = \frac{n_1}{n_2} \dot{i}_h(t) \tag{6.4}$$

La tension aux bornes du bobinage auxiliaire est égale à

$$u_2(t) = U_2 = -U 6.5$$

et par conséquent, la tension aux bornes de l'inductance magnétisante, référée au primaire du transformateur est exprimée par la relation

$$u_1(t) = \frac{n_1}{n_2} \cdot u_2(t) = -\frac{n_1}{n_2} \cdot U$$
6.6

Cette tension négative aux bornes de l'inductance magnétisante entraîne une décroissance de courant magnétisant dont la dérivée vaut

$$\frac{d}{dt}i_h(t) = -\frac{n_1}{n_2} \cdot \frac{U}{L_h} \tag{6.7}$$

La tension aux bornes du bobinage connecté au circuit de sortie est également négative

$$u_3(t) = \frac{n_3}{n_2} \cdot u_2(t) = -\frac{n_3}{n_2} \cdot U$$
6.8

puisque la diode D_2 est bloquée, c'est la diode D_3 qui assure la continuité du courant dans l'inductance L.

Figure 6.12 : Montage Forward avec D₁ et D₃ conducteurs

6.2.2.3 Intervalle à courant magnétisant nul

Lorsque le courant magnétisant s'annule, la diode D_1 se trouve en polarisation inverse. Les semiconducteurs Q_1 , D_1 et D_2 se trouve dans l'état bloqué. Le courant magnétisant reste nul jusqu'à la fin de la période de pulsation. En appliquant le principe que la valeur moyenne de la tension aux bornes de l'inductance magnétisante est nulle en régime permanent, on peut affirmer que la tension moyenne aux bornes du primaire du transformateur (c'est à dire aux bornes de l'inductance magnétisante) est nulle

$$U_1 = D \cdot U + D_2 \cdot (-\frac{n_1}{n_2} \cdot U) + D_3 \cdot (0) = 0$$
6.9

Avec D, rapport cyclique d'enclenchement, D₁, temps d'extinction du courant rapporté à la période de pulsation T_p et D₃ temps pendant lequel le courant magnétisant est nul, rapporté à la période de pulsation T_p .

De la relation 6.9 on en déduit le rapport cyclique d'extinction du courant D₂

$$D_2 = \frac{n_2}{n_1} \cdot D \tag{6.10}$$

Le courant magnétisant doit impérativement est nul avant le prochain enclenchement du transistor. En effet, afin d'éviter la saturation du circuit magnétique du transformateur, l'inductance de champ principal L_h , en conjonction avec la diode D_1 , doit travailler dans en mode de conduction discontinu. Par conséquent, le rapport cyclique D_3 ne peut pas être négatif. Sachant que

$$D_3 = 1 - D - D_2 \ge 0 \tag{6.11}$$

on peut écrire

$$D_3 = 1 - D \cdot (1 + \frac{n_2}{n_1}) \ge 0 \tag{6.12}$$

et donc la condition sur le rapport cyclique d'enclenchement de Q1 devient

$$D \le \frac{1}{1 + \frac{n_2}{n_1}} \tag{6.13}$$

L'inductance de sortie L relation avec la diode D₃ peut fonctionner en mode continu ou discontinu.

Figure 6.13 : Montage Forward avec Q₁, D₁, D₂, D₃ bloqués

6.2.2.4 Allures temporelles des tensions et courants

SYSTÈMES ÉLECTRONIQUES I, 1ÈRE PARTIE

La Figure 6.14 illustre les allures des principales grandeurs électriques du montage FORWARD. Les grandeurs de sortie, c'est-à-dire les courants dans la charge I_R , dans le condensateur i_c , dans l'inductance i_L ainsi que les tensions correspondantes se calculent de la même manière que pour le montage BUCK.

Figure 6.14 : Montage Forward : allures des grandeurs électriques principales

6.2.2.5 Rapport de transformation global

Pour obtenir la tension de sortie du montage Forward, il suffit d'appliquer le principe de la tension moyenne nulle aux bornes de l'inductance L du filtre de sortie en régime permanent

$$u_{D3} = U_C = U_3 \cdot D = \frac{n_3}{n_1} \cdot D \cdot U$$
 6.14

Cette relation est valable pour le mode de conduction continue.

6.2.2.6 Facteur dimensionnant du transistor Q1

La relation 6.14 montre que le rapport cyclique D maximum pourrait être augmenté en diminuant le rapport du nombre de spires n_2/n_1 . En effet dans ce cas la décroissance du courant magnétisant durant la phase d'extinction se trouve augmentée. Malheureusement, une diminution de n_1/n_2 entraîne une augmentation de la tension aux bornes du transistor Q_1 . La tension maximum appliquée aux bornes du transistor durant l'intervalle d'extinction du courant magnétisant est exprimée par la relation

$$u_{Q1} = U \cdot (1 + \frac{n_1}{n_2}), \tag{6.15}$$

ce qui corrobore l'affirmation qui précède.

Page 6-20

6.3 CONVERTISSEUR DE TYPE SYMÉTRIQUE AVEC ISOLATION GALVANIQUE

6.3.1 Montage PUSH-PULL (pont complet)

Comme pour le montage Forward, le montage Push-Pull est dérivé du montage Buck. Ce type de convertisseur est particulièrement bien adapté pour les basses tensions de sortie avec forts courants.

Le bobinage secondaire avec point milieu peut être vu comme deux bobinages séparés et donc être traité comme un transformateur à trois bobinages dont le rapport du nombre de spires est défini comme $n_1:n_2:n_2$.

Figure 6.15 : Montage Push-Pull

6.3.2 Etude de fonctionnement

Lorsque le transformateur est remplacé par son modèle équivalent réel, on obtient le schéma illustré à la Figure 6.16.

Figure 6.16 : Montage Push-Pull avec modèle du transformateur réel

L'allure des grandeurs électriques principales sont montrées à la Figure 6.17.

Figure 6.17 : Montage Push-Pull : allures des grandeurs électriques principales

La sortie du convertisseur est similaire à un montage Buck si l'on compare la tension $u_s(t)$ et i(t) à $u_D(t)$ et $i_L(t)$.

SYSTÈMES ÉLECTRONIQUES I, 1^{ÈRE} PARTIE

Durant le premier intervalle $0 \le t < DT_p$, Q_1 et Q_4 sont conducteurs et la tension U se trouve aux bornes du primaire du transformateur, soit

$$u_1(t) = U \tag{6.16}$$

Le courant magnétisant i_h va donc croître selon la relation

$$i_h(t) = \frac{U}{L_h} \cdot t \tag{6.17}$$

La tension apparaissant au secondaire entre le point milieu et chaque sortie vaut

$$u_2(t) = \frac{n_2}{n_1} \cdot u_1(t) = \frac{n_2}{n_1} \cdot U$$
6.18

ceci avec le signe défini par les points de polarité. La diode D₅ est donc conductrice, alors que D₆, polarisée dans le sens inverse, est bloquée. La tension de sortie vaut donc

$$u_C(t) = u_2(t) = \frac{n_2}{n_1} \cdot U$$
. 6.19

Le courant i circulant dans l'inductance du filtre de sortie passe par D₅.

Plusieurs scénarios sont possibles pour le second intervalle $DT_p \le t < T_p$. Dans la plupart des cas, les quatre transistors sont ouverts fixant la tension aux bornes de l'inductance magnétisante L_h à

$$u_1(t) = 0.$$
 6.20

Durant ce second intervalle, le courant dans les diodes D_5 et D_6 est fonction du courant circulant dans l'inductance L du filtre de sortie et su courant magnétisant i_h. Dans le cas idéal (sans courant magnétisant), les courants i_{D5} et i_{D6} sont égaux (i₁(t)=0). Ils assurent la continuité du courant dans l'inductance L

$$i_{D5}(t) + i_{D6}(t) = i_L(t)$$
 6.21

En pratique, les courants circulant dans les diodes D₅ et D₆ sont légèrement différents si l'on tient compte du courant magnétisant. La partie idéale du transformateur obéit à la loi

$$n_1 \cdot i_1(t) - n_2 \cdot i_{D5}(t) + n_2 \cdot i_{D6}(t) = 0$$
6.22

La somme des courants au nœud d'entrée du transformateur vaut

$$i(t) = i_h(t) + i_1(t)$$
 6.23

En éliminant i₁(t) des deux équations précédentes, on obtient

$$n_1 \cdot i(t) - n_2 \cdot i_{D5}(t) + n_2 \cdot i_{D6}(t) = n_1 \cdot i_h(t)$$
6.24

Cette relation décrit, dans le cas général, la liaison entre les courants circulant de part et d'autre du transformateur durant le second intervalle. La répartition du courant magnétisant dans les trois

bobinages du transformateur dépend des caractéristiques i,v des transistors conducteurs et des diodes. Dans le cas ou i(t)=0, on peut écrire en admettant que les caractéristiques des diodes D_5 et D_6 sont identiques

$$i_{D5}(t) = \frac{1}{2} \cdot i_{L}(t) - \frac{1}{2} \cdot \frac{n_{1}}{n_{2}} \cdot i_{h}(t)$$

$$i_{D6}(t) = \frac{1}{2} \cdot i_{L}(t) + \frac{1}{2} \cdot \frac{n_{1}}{n_{2}} \cdot i_{h}(t)$$

6.25

Dans un cas de charge nominal, le courant dans la charge et par conséquent dans l'inductance L du filtre de sortie est beaucoup plus grand que le courant magnétisant.

La prochaine période de pulsation T_p est similaire à la précédente, exception faite que la tension appliquée au primaire du transformateur est de polarité opposée.

En effet durant l'intervalle $T_p \le t < (T_p+D\cdot T_p)$, ce sont les transistors Q_2 et Q_3 et la diode D_6 qui sont conducteurs. La tension appliquée au primaire vaut $u_1(t) = -U$, laquelle provoque une décroissance du courant magnétisant i_h selon la pente $-U/L_h$. Les diodes D_5 et D_6 redeviennent les deux conductrices durant l'intervalle $(T_p+D\cdot T_p) \le t < 2T_p$.

La fréquence de l'ondulation de courant dans l'inductance est égale à f_p alors que celle du courant magnétisant est de $\frac{1}{2} f_p$, réduisant du même coup les pertes fer du transformateur.

En appliquant le principe de la tension moyenne nulle aux bornes de l'inductance magnétisante du transformateur en régime permanent, on peut écrire

$$\left(U - \{\Delta U_{Q_1} + \Delta U_{Q_4}\}\right) \cdot \left(D \cdot T_p\right) - \left(U - \{\Delta U_{Q_2} + \Delta U_{Q_3}\}\right) \cdot \left(D \cdot T_p\right) = 0.$$

$$6.26$$

En pratique, les asymétries du pont (dispersion des caractéristiques des composants) font qu'il est difficile voir impossible d'assurer une tension moyenne nulle aux bornes du transformateur. Il y a donc risque de voir le courant magnétisant moyen augmenter et donc provoquer la saturation du noyau magnétique du transformateur. Un moyen d'éviter ce phénomène est d'ajouter un condensateur en série avec le primaire du transformateur. Puisqu'en régime permanent, le courant moyen aux bornes du condensateur est nul, nous avons la certitude que dernier aura à ces bornes la tension résultante des asymétries du pont.. Il existe une topologie de demi-pont où une branche du pont du montage push-pull est remplacée par deux condensateurs.

Le montage Push-Pull est en principe utilisé pour des puissances supérieures à 750W. Pour des puissances inférieures on lui préfère des montages moins gourmands en composants.

6.4 ÉVALUATION ET DIMENSIONNEMENT DES CONVERTISSEURS DC-DC

6.4.1 Généralités

Il n'existe pas de choix définitif et absolu de topologie de convertisseurs DC-DC qui conviennent à toutes les applications. Pour chaque application et ses spécifications propres, une étude comparative devrait être effectuée avant le choix d'une topologie. Plusieurs solutions dont le résultat est conforme aux spécifications doivent être considérées, pour chaque approche, il est important de définir des critères tels que la tension maximum apparaissant aux bornes du transistor, le courant efficace, la taille du transformateur, etc ... Ce type de comparaison quantitatif peut conduire à la sélection de la meilleure topologie en évitant l'avis subjectif du concepteur.

6.4.2 Stress et taux d'utilisation des semiconducteurs (transistor)

Ce sont souvent les semiconducteurs qui représentent le coût le plus élevé des convertisseurs DC-DC. De plus, les pertes associées à la conduction et à la commutation des semiconducteurs sont dominantes. Ces affirmations suggèrent donc une évaluation du niveau de stress imposé aux semiconducteurs. La minimisation du stress de ces derniers conduit à une réduction de la surface totale de silicium lors de la réalisation. Il est d'usage de comparer la somme totale du stress imposé à chaque semiconducteur. Dans un bon design, les tensions et courants dédicacés à chaque semicondcteur doivent être minimisés, alors que la puissance est maximisée. Si un convertisseur DC-DC contient k semiconducteurs, le stress global S peut être défini par

$$S = \sum_{j=1}^{k} U_{j(peak)} \cdot I_{j(rms)}$$

$$6.27$$

où $U_{j(peak)}$ est la pointe de tension appliquée aux bornes du semiconducteur et $I_{j(rms)}$ le courant efficace qui le traverse. Si la puissance consommée par la charge est vaut P_{charge} , le taux d'utilisation du composant est défini comme

$$T_C = \frac{P_{charge}}{S}$$
 6.28

Le taux d'utilisation T_C est plus petit que 1 dans les convertisseurs DC-DC et sa valeur doit être maximisée.

6.4.2.1 Pointe de tension sur les transistors pour les montages étudiés

Les pointes de tension rencontrées pour chaque montage avec isolation galvanique sont rappelées ci-dessous.

6.4.2.1.1 Montage Flyback

$$u_{Q^{1}(peak)} = U + \frac{n_{1}}{n_{2}}U_{C} = U + U \cdot \frac{D}{1 - D} = \frac{U}{1 - D}$$
6.29

6.4.2.1.2 Montage Forward

$$u_{Q_{1}(peak)} = U \cdot (1 + \frac{n_{1}}{n_{2}})$$
6.30

6.4.2.1.3 Montage Push-Pull

$$u_{Q1,2,3,4(peak)} = U$$
 6.31

6.4.2.2 Courant efficace sur les transistors pour les montages étudiés

Pour la détermination des courants efficaces on peut négliger l'ondulation de courant dans les inductances. En effet on peut montrer que

- pour un courant continu avec ondulation superposée à croissance et décroissance linéaire

Figure 6.18 : Courant continu avec ondulation superposée

$$I_{(rms)} = I \cdot \sqrt{1 + \frac{1}{12} \cdot \left(\frac{\Delta i}{I}\right)^2}$$

$$6.32$$

- pour un courant pulsé avec croissance linéaire du courant

Figure 6.19 : Courant pulsé avec ondulation superposée

$$I_{(rms)} = I \cdot \sqrt{D} \cdot \sqrt{1 + \frac{1}{12} \cdot \left(\frac{\Delta i}{I}\right)^2}$$

$$6.33$$

Le tableau comparatif ci-dessous permet d'estimer l'erreur faite lorsque l'on s'affranchit de l'ondulation superposée

Ondulation de courant rapportée au courant l	Courant continu avec ondulation	Courant pulsé
$\Delta i = 0 \cdot I$	Ι	$\sqrt{D} \cdot I$
$\Delta i = 0.2 \cdot I$	1.00167· <i>I</i>	$1.00167 \cdot \sqrt{D} \cdot I$
$\Delta i = 0.5 \cdot I$	1.01036· <i>I</i>	$1.01036 \cdot \sqrt{D} \cdot I$
$\Delta i = 1 \cdot I$	1.04083· <i>I</i>	$1.04083 \cdot \sqrt{D} \cdot I$
$\Delta i = 2 \cdot I$	1.15470· <i>I</i>	$1.15470 \cdot \sqrt{D} \cdot I$

6.4.2.2.1 Montage Flyback

$$I_{Q_{(rms)}} = \sqrt{\frac{1}{T_p} \cdot \int_{0}^{T_p} i_Q^2 \cdot dt} = \sqrt{\frac{1}{T_p} \cdot \int_{0}^{D \cdot T_p} (i_Q(t))^2 \cdot dt}$$
$$\approx \sqrt{\frac{1}{T_p} \cdot \int_{0}^{D \cdot T_p} \left(\frac{n_2}{n_1} \cdot \frac{1}{1 - D} \cdot I_R\right)^2 \cdot dt}$$
$$= \frac{n_2}{n_1} \cdot \frac{\sqrt{D}}{1 - D} \cdot I_R$$
$$6.34$$

6.4.2.2.2 Montage Forward

$$I_{Q(rms)} = \sqrt{\frac{1}{T_p} \cdot \int_{0}^{T_p} i_Q^2 \cdot dt} = \sqrt{\frac{1}{T_p} \cdot \int_{0}^{D \cdot T_p} (i_Q(t))^2 \cdot dt}$$
$$\approx \sqrt{\frac{1}{T_p} \cdot \int_{0}^{D \cdot T_p} \left(\frac{n_3}{n_1} \cdot I_R\right)^2 \cdot dt}$$
$$= \frac{n_3}{n_1} \cdot \sqrt{D} \cdot I_R$$
$$6.35$$

6.4.2.2.3 Montage Push-Pull

$$I_{Q1,2,3,4_{(rms)}} = \sqrt{\frac{1}{2 \cdot T_p} \cdot \int_{0}^{2 \cdot T_p} i_Q^2 \cdot dt} = \sqrt{\frac{1}{2 \cdot T_p} \cdot \int_{0}^{D \cdot T_p} (i_Q(t))^2 \cdot dt}$$
$$\approx \sqrt{\frac{1}{2 \cdot T_p} \cdot \int_{0}^{D \cdot T_p} \left(\frac{n_2}{n_1} \cdot I_R\right)^2 \cdot dt}$$
$$= \frac{n_2}{n_1} \cdot \sqrt{\frac{D}{2}} \cdot I_R$$
 6.36

6.4.2.3 Taux d'utilisation des transistors pour les montages étudiés

6.4.2.3.1 Montage Flyback

Le stress global s'exprime par la relation

$$S = \frac{U}{1-D} \cdot \frac{n_2}{n_1} \cdot \frac{\sqrt{D}}{1-D} \cdot I_R = \frac{U_C}{D} \cdot \frac{\sqrt{D}}{1-D} \cdot I_R = \frac{P_{LOAD}}{\sqrt{D} \cdot (1-D)}$$

$$6.37$$

et par conséquent le taux d'utilisation peut être défini comme

$$T_C = \frac{P_{LOAD}}{S} = \sqrt{D} \cdot (1 - D) \tag{6.38}$$

6.4.2.3.2 Montage Forward

Le stress global s'exprime par la relation

$$S = U \cdot (1 + \frac{n_2}{n_1}) \cdot \frac{n_3}{n_1} \cdot \sqrt{D} \cdot I_R = \frac{U_C}{D} \cdot (1 + \frac{n_2}{n_3}) \cdot \sqrt{D} \cdot I_R$$

$$= \frac{1}{\sqrt{D}} \cdot (1 + \frac{n_2}{n_1}) \cdot P_{LOAD}$$

$$(6.39)$$

et par conséquent le taux d'utilisation peut être défini comme

$$T_{C} = \frac{P_{LOAD}}{S} = \frac{1}{1 + \frac{n_{2}}{n_{1}}} \cdot \sqrt{D}$$
6.40

6.4.2.3.3 Montage Push-Pull

Le stress global s'exprime par la relation

$$S = U \cdot \frac{n_2}{n_1} \cdot \frac{\sqrt{D}}{\sqrt{2}} \cdot I_R = \frac{U_C}{D} \cdot \frac{\sqrt{D}}{\sqrt{2}} \cdot I_R = \frac{P_{LOAD}}{\sqrt{2} \cdot D}$$

$$6.41$$

et par conséquent le taux d'utilisation peut être défini comme

$$T_C = \frac{P_{LOAD}}{S} = \sqrt{2 \cdot D} \tag{6.42}$$